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Today’s
Contents

XFeiF Presentation 2018

•[v1]Going Deeper with Convolution 

•[v2]Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

•[v3]Rethinking the Inception Architecture for Computer Vision 

•[v4]Inception-v4, Inception-RestNet and the Impact of Residual Connections on Learning

•[X] Xception: Deep Learning with Depthwise Separable Convolutions

Inceptions  & Xception
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Motivation

XFeiF Presentation 2018

Q) What is the best way to improve the performance  of deep neural network?

A) Bigger size!
(Increase the depth and width of the model) 
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Problems

XFeiF Presentation 2018

1. Bigger model typically means a larger number of parameters →

overfitting 

2. Increased use of computational resources 

→ e.g. quadratic increase of computation 

𝟑×𝟑×𝑪→ 𝟑×𝟑×𝑪: 𝑪𝟐 computations 

Solution: Sparsely connected architecture 
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Sparsely Connected Architecture

XFeiF Presentation 2018

1. Mimicking biological system
2. Theoretical underpinnings

→Arora et al.
Provable bounds for learning some deep representations 

ICML 2014 
“Given samples from a sparsely connected neural network 
whose each layer is a denoising autoencoder, can the net (and 
hence its reverse) be learnt in polynomial time with low sample 
complexity?” 

YES!  
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Why Arora et al. is important

XFeiF Presentation 2018

To provably solve optimization problems for general neural networks with two or more layers, the algorithms that would be necessary 
hit some of the biggest open problems in computer science. So, we don't think there's much hope for machine learning researchers
to try to find algorithms that are provably optimal for deep networks. This is because the problem is NP-hard, meaning that provably 
solving it in polynomial time would also solve thousands of open problems that have been open for decades. Indeed, in 1988 J.
Stephen Judd shows the following problem to be NP-hard: 

Given a general neural network and a set of training examples, does 
there exist a set of edge weights for the network so that the network 
produces the correct output for all the training examples? 

Judd also shows that the problem remains NP-hard even if it only requires a network to produce the correct output for just two-
thirds of the training examples, which implies that even approximately training a neural network is intrinsically difficult in the worst 
case. In 1993, Blum and Rivest make the news worse: even a simple network with just two layers and three nodes is NP-hard to train! 

https://www.oreilly.com/ideas/the-hard-thing-about-deep-learning 
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Problems

XFeiF Presentation 2018

1. Sparse matrix computation is very inefficient

→ dense matrix calculation is extremely efficient 

2. Even ConvNet changed back from sparse connection to full connection for 

better optimize parallel computing 
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Inception Architecture

XFeiF Presentation 2018

Main idea 
How to find out an optimal local sparse structure in a convolutional network and 
how can it be approximated and covered by readily available dense components? 

: All we need is to find the optimal local construction and to repeat it spatially 
: Arora et al.: layer by layer construction with correlation statistics analysis 
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Inception
Architecture

XFeiF Presentation 2018

In images, correlations tend to be local Cover very local clusters by 1x1 convolutions 

number of filters 

1x1 

Less spread out correlations Cover more spread out clusters by 3x3 convolutions 

3x3
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Inception
Architecture

XFeiF Presentation 2018

Cover more spread out clusters by 5x5 convolutions 

number of filters 

1x1 

3x3
5x5
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Inception
Architecture > Naïve Version

XFeiF Presentation 2018

A heterogeneous set of convolutions 

number of filters 
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Inception
Architecture > Naïve Version

XFeiF Presentation 2018

Filter
concatenation

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max 
pooling

Previous Layer

Naïve Inception module

Apply parallel filter operations on the 
input from previous layer: 
- Multiple receptive field sizes for 
convolution (1x1, 3x3, 5x5) 
- Pooling operation (3x3) 

Concatenate all filter outputs together 
depth-wise 

?
?

?

Q: What is the problem with this?
[Hint: Computational complexity]
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Inception
Architecture > Naïve Version

XFeiF Presentation 2018

Filter
concatenation

1x1 conv,
128

3x3 conv,
192

5x5 conv,
96

Previous Layer

Naïve Inception module

3x3 pool

Module input:
28x28x256

Q: What is the problem with this?
[Hint: Computational complexity]Example:

Q1:What is the output size of the
1x1 conv, with 128 filters?

28x28x128
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Inception
Architecture > Naïve Version

XFeiF Presentation 2018

Filter
concatenation

1x1 conv,
128

3x3 conv,
192

5x5 conv,
96

Previous Layer

Naïve Inception module

3x3 pool

Module input:
28x28x256

Q: What is the problem with this?
[Hint: Computational complexity]Example:

Q2:What are the output size of 
all different filter operations?

28x28x192 28x28x96 28x28x25628x28x128
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Inception
Architecture > Naïve Version

XFeiF Presentation 2018

Filter
concatenation

1x1 conv,
128

3x3 conv,
192

5x5 conv,
96

Previous Layer

Naïve Inception module

3x3 pool

Module input:
28x28x256

Q: What is the problem with this?
[Hint: Computational complexity]Example:

Q3:What is output size after
Filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Conv Ops: 
[1x1 conv, 128] 28x28x128x1x1x256 
[3x3 conv, 192] 28x28x192x3x3x256 
[5x5 conv, 96] 28x28x96x5x5x256 
Total: 854M ops

Very expensive compute 

Pooling layer also preserves feature 
depth, which means total depth after 
concatenation can only grow at every 
layer! 
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Inception
Architecture > Naïve Version

XFeiF Presentation 2018

Filter
concatenation

1x1 conv,
128

3x3 conv,
192

5x5 conv,
96

Previous Layer

Naïve Inception module

3x3 pool

Module input:
28x28x256

Q: What is the problem with this?
[Hint: Computational complexity]Example:

Q3:What is output size after
Filter concatenation?

28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Solution: “bottleneck” layers that 
use 1x1 convolutions to reduce 
feature depth 
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NIN

XFeiF Presentation 2018

Conv = GLM MLPConv = 𝟏×𝟏 Conv 
GLM is replaced with a ”micro network” structure 
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Inception
1x1 Conv

XFeiF Presentation 2018

1x1 Conv with 32 filters

(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product) 
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Inception
1x1 Conv

XFeiF Presentation 2018

1x1 Conv with 32 filters

preserves spatial 
dimensions, reduces depth! 

Projects depth to lower 
dimension (combination of 
feature maps) 
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Inception
Revolution

XFeiF Presentation 2018

Filter
concatenation

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max 
pooling

Previous Layer

Naïve Inception module

Filter
concatenation

1x1
convolution

3x3
convolution

5x5
convolution

3x3 max 
pooling

Previous Layer

1x1
convolution

1x1
convolution

1x1
convolution

Inception module with dimension reduction

1x1 conv bottleneck layers
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Inception
V1

XFeiF Presentation 2018

Filter
concatenation

1x1 conv,
128

3x3 conv,
192

5x5 conv,
96

3x3 pool

Previous Layer

1x1 conv,
64

1x1 conv,
64

1x1 conv,
64

Inception module with dimension reduction

Module input:
28x28x256

28x28x64 28x28x64

28x28x96 28x28x64

28x28x256

28x28x128 28x28x192

Conv Ops: 
[1x1 conv, 64] 28x28x64x1x1x256 
[1x1 conv, 64] 28x28x64x1x1x256 
[1x1 conv, 128] 28x28x128x1x1x256 
[3x3 conv, 192] 28x28x192x3x3x64 
[5x5 conv, 96] 28x28x96x5x5x64 
[1x1 conv, 64] 28x28x64x1x1x256 
Total: 358M ops

Compared to 854M ops for naive version 
Bottleneck can also reduce depth after 
pooling layer 

28x28x480
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Inception
V1- GoogLeNet

XFeiF Presentation 2018
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Inception
V2 > 5x5---3x3

XFeiF Presentation 2018

5x5：3x3 = 25：9（25/9 = 2.78倍）当然，5x5转换操作的
成本比3x3转换操作高出约2.78倍。

计算将两个相同大小的图层转换为一个5x5和两个3x3之间
的成本：
5x5xN：（3x3xN）+（3x3xN）= 25：9 + 9 = 25:18（减少
效果约28％）
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Inception
V2 > BN

XFeiF Presentation 2018

(1) 可以使用更高的学习率。如果每层的scale不一致，实际上每层需要的学习率是不一样
的，同一层不同维度的scale往往也需要不同大小的学习率，通常需要使用最小的那个学习
率才能保证损失函数有效下降，Batch Normalization将每层、每维的scale保持一致，那么我
们就可以直接使用较高的学习率进行优化。

(2) 移除或使用较低的dropout。 dropout是常用的防止overfitting的方法，而导致overfit的位
置往往在数据边界处，如果初始化权重就已经落在数据内部，overfit现象就可以得到一定的
缓解。论文中最后的模型分别使用10%、5%和0%的dropout训练模型，与之前的40%-50%相
比，可以大大提高训练速度。

(3) 降低L2权重衰减系数。 还是一样的问题，边界处的局部最优往往有几维的权重（斜率）
较大，使用L2衰减可以缓解这一问题，现在用了Batch Normalization，就可以把这个值降低
了，论文中降低为原来的5倍。

(4) 取消Local Response Normalization层。 由于使用了一种Normalization，再使用LRN就显
得没那么必要了。而且LRN实际上也没那么work。

(5) 减少图像扭曲的使用。 由于现在训练epoch数降低，所以要对输入数据少做一些扭曲，
让神经网络多看看真实的数据。

https://blog.csdn.net/happynear/article/details/44238541
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Inception
V2

XFeiF Presentation 2018
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Inception
V3

XFeiF Presentation 2018
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Inception
V3

XFeiF Presentation 2018

v3一个最重要的改进是分解（Factorization），将7x7
分解成两个一维的卷积（1x7,7x1），3x3也是一样
（1x3,3x1），这第一个样的好处，既可以加速计算
（多余的计算能力可以用来加深网络），又可以将1个
conv拆成2个conv，使得网络深度进一步增加，增加了
网络的非线性，还有值得注意的地方是网络输入从
224x224变为了299x299，更加精细设计了
35x35/17x17/8x8的模块；



28

Inception
V3

XFeiF Presentation 2018
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