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i\\\\a

Filter concate
nation
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5x5 convoluti

1x1 convoluti

Filter Concat
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1x1 convoluti 1x1 convoluti 3x3 max pooli
ons ons ng
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Previous layer

3x3
i
3x3 3x3 1x1
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1x1 1x1 Pool 1x1
Base

Inceptions

Filter Concat

1x1

Concat

[
T
1x1 conv

I

Input
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I Motivation

Q) What is the best way to improve the performance of deep neural network?

A) Bioger size!
(Increase the depth and width of the model)
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I Problems

1. Bicger model typically means a larger number of parameters -
overfitting

2. Increased use of computational resources
— e.g. quadratic increase of computation

3x3xC - 3x3xC: C2 computations

Solution: Sparsely connected architecture
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Sparsely Connected Architecture

1. Mimicking biological system
2. Theoretical underpinnings

-> Arora et al.
Provable bounds for learning some deep representations

ICML 2014

“Given samples from a sparsely connected neural network
whose each layer is a denoising autoencoder, can the net (and
hence its reverse) be learnt in polynomial time with low sample
complexity?”

YES!
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Why Arora et al. is important

To provably solve optimization problems for general neural networks with two or more layers, the algorithms that would be necessary
hit some of the biggest open problems in computer science. So, we don't think there's much hope for machine learning researchers
to try to find algorithms that are provably optimal for deep networks. This is because the problem is NP-hard, meaning that provably
solving it in polynomial time would also solve thousands of open problems that have been open for decades. Indeed, in 1988 J.
Stephen Judd shows the following problem to be NP-hard:

Given a general neural network and a set of training examples, does
there exist a set of edge weights for the network so that the network
produces the correct output for all the training examples?

Judd also shows that the problem remains NP-hard even if it only requires a network to produce the correct output for just two-
thirds of the training examples, which implies that even approximately training a neural network is intrinsically difficult in the worst
case. In 1993, Blum and Rivest make the news worse: even a simple network with just two layers and three nodes is NP-hard to train!

https://www.oreilly.com/ideas/the-hard-thing-about-deep-learning
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Problems

1. Sparse matrix computation is very inefficient
- dense matrix calculation is extremely efficient

2. Even ConvNet changed back from sparse connection to full connection for

better optimize parallel computing

_ C3: 1. maps 16@10x10 001 2 3 456 7 8 9 101112131415

|3N2P:L‘)21 gézfgatzlgemaos R r S4: 1. maps 16@5(: " — EBS X X X X X X X X X
F8: layer X X XXX X XXX X

I—s@m - I_ \ ‘d{ ; t \ » j: t X . : i Q X t

h d 7 X X X X XX

XXXX XX X

Is there any mterme late step.

/i

con Gaussian connections . .
Full nection EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
Convolutions Subsampling Convolutions  Subsampling Full connection

BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3
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I Inception Architecture

Main 1dea
How to find out an optimal local sparse structure in a convolutional network and
how can it be approximated and covered by readily available dense components?

: All we need 1s to find the optimal local construction and to repeat it spatially
: Arora et al.: layer by layer construction with correlation statistics analysis
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Inception S
Architecture Coer '

5 o oo N re. 2y N ALY,
w:u,zvaiw‘i GEEHEINNACITERN I XD

number of filters

I1x1
@ 3x3

_ —
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Ilncepﬁon

. Cover more spread out clusters by 5x5 convolutions
Architecture

number of filters

@ X1
5x5

3x3

— J =" ==

XFelF Presentation 2018
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Inception

Architecture > Naive Version

A heterogeneous set of convolutions

number of filters

3x3

Filter concaten
ation

R

1x1 convolutio
ns

3x3 convolutio
ns

\AS

5/
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5x5 convolutio
ns

'\I/'

Previous layer
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Inception

Architecture > Naive Version

Filter
concatenation

N T

Ix1 3x3 5x5
convolution convolution convolution

3x3 max
pooling

— o =

Previous Layer

Naive Inception module

XFelF Presentation 2018

Apply parallel filter operations on the
input from previous layer:

- Multiple receptive field sizes for
convolution (1x1, 3x3, 5x5) ?

- Pooling operation (3x3) 2

Concatenate all filter outputs together

depth-wi
epth-wise )

Q: What is the problem with this?
[Hint: Computational complexity]
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Inception

Architecture > Naive Version

E le: Q1:What is t_he OUtpl_Jt size of the Q: What is the problem with this?
xample: 1x1 conv, with 128 filters? [Hint: Computational complexity]

Filter
concatenation

28x28x128 //" \\

1x1 conv, 3x3 conv, 5x5 conv, 3x3 ool
Module input: Previous Layer
28x28x256

Naive Inception module
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Inception

Architecture > Naive Version

Q2:What are the output size of Q: What is the problem with this?
Example: all different filter operations? [Hint: Computational complexity]
Filter
concatenation
\ -
28x28x128 _— 28x28x192 4 28x28x96 —™— 28x28x256
1x1 conv, 3x3 conv, 5x5 convy, 3x3 pool
Module input: Previous Layer

28x28x256

Naive Inception module
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Inception

Architecture > Naive Version

Q3:What is output size after Q: What is the - : 0
_ _ : ; problem with this?
Example: Filter concatenation? [Hint: Computational complexity]
28x28x(128+19F2_|-{-96+256) = 28x28x672
ilter
concatenation Conv Ops:
— \ -
28x28x128 ___— 28x28x192 7 28x28x96 —— 28x28x256 [1x1 conv, 128] 28x28x128x1x1x256
- ~ [3x3 conv, 192] 28x28x192x3x3x256
1x1 conv, SX3 conv, Sx9/conv, 3x3 pool [5x5 conv, 96] 28x28x96x5x5x256
128 192 96 X2 POO
Total: 854M ops
W Very expensive compute
Module input: Previous Layer _
28%28x256 Pooling layer also preserves feature
depth, which means total depth after
. . concatenation can only grow at every
Naive Inception module layer!
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Inception

Architecture > Naive Version

Exambple: Q_3:What S OUtpL.'t si?ze after Q: What is the problem with this?
pie: Filter concatenation [Hint: Computational complexity]
28x28x(128+19F2|-{-96+256) = 28x28x672
iIter
concatenation
// ~N—
—— 28x28x192 28x28x96 —— 28x28x256 Solution: “bottleneck” layers that
1x1 conv, 3x3 conv, 5x5 conv, 243 bool use 1x1 convolutions to reduce
Module input: Previous Layer
28x28x256

Naive Inception module
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NIN
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K:"""—'r\

(a) Linear convolution layer (b) Mlpconv layer

Conv = GLM MLPConv = 1x1 Conv
GLM is replaced with a "micro network” structure

\
.
\
.
.
\
.
\
.
\

&T00 0
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Inception

1x1 Conv

56

56

XFelF Presentation 2018

1x1 Conv with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

v

32

56

56
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Inception

1x1 Conv

56

56

XFelF Presentation 2018

1x1 Conv with 32 filters

v

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

32

56

56
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Inception

Revolution

| 1x1 conv bottleneck layers Filter
Filter concatenation

56 I
b 38 M= @onvalton convolon convalton convaluion

convolution COﬂVdUUOﬂ (mvoluuon T T

Previous Layer /mm/m?g
Naive Inception module Previous Layer

Inception module with dimension reduction
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Inception
V1

28x28x480

Filter

concatenation

28x28x128 _— 28x28x192

o -
1x1 conv, 3x3 conv,
128 192
28x28x64

1x1 conv,
64

AN

Module input:
28x28x256

- \
5x5 conv, 1x1 conv,
96 64
28x28x64 28x28x256
1x1 conv,
64 3x3 pool

S

Previous Layer

Inception module with dimension reduction

XFelF Presentation 2018

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

21



Inception
V1- GoogleNet

XFelF Presentation ¢

type pa;:ﬂ;ize/ 0‘;3:“ depth | #1x1 ig:ci #3x3 ﬁj:cse #5X5 g:zjl params ops
convolution TXT7/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56 x56 x 64 0

convolution 3x3/1 56x 56 x192 2 64 192 112K | 360M
max pool 3x3/2 28x28x 192 0

inception (3a) 28 %28 %256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x480 2 128 128 192 32 96 64 380K | 304M
max pool 3x3/2 14x 14 x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTx832 0

inception (5a) TxTx832 2 256 160 320 32 128 128 | 1072K | 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 | 1388K | 71M
avg pool 7x7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0

Table 1: GoogLeNet incarnation of the Inception architecture.
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Inception

V2 > 5x5---3x3
Filter Concat Filter Concat
5x5 3x3 1x1
1x1 1x1 Pool ik
1x1 1x1 Pool | | 1x1
747 G |
/y// I]
[// II i Base
original inception module factorizing inception module
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Inception

V2>BN

(AT ERAEEN®IER., MREEHNscale ’—3, LFr I EEEEMNFIRELR—F
K, B—EAR%EERscaleFFtHBEEARAN/NNEIR, BERZFEAR/NOIPITES
RARRIEMKREE N NE, Batch Normalization§&ZE. S4RYscalefRIF—2, PAFK
Nt B EE AR SN ZE I RH#H T

(2) #%Bxel 5 B {KAYdropout, dropoutZ & FBRYBA L overfittingfY 777%, 1S EoverfitAY L
EFFESUEDL AL, RV UNEMEREAELEIEANLR, overfitIL R o] INFE—EH
ZfR, BXPRENEESAER10%. 5%F0%[)dropout JIIZREE, 5 BIAJ40%-50%4H
tb, TTIUAKIEBSINGRE.

Q) BELNERBREE . Te—MHHO&, HBRLHNBIFREFFEILLENNE (FX)
R, FHAL2ZRRE O ZE#IX—o)@, ILFE A 7 Batch Normalization, &t o] IUIEIXMEBF1E
T, WX R ARKRSE,

(4) BU;BLocal Response Normalization/Z ., BT{fH 7 —FNormalization, F{# HLRNH
BERLMET , TELRNSEFFE 3% AR 4 work,

5) B EGIEMAER. BTFIAE ZepochEER, FrILEXNE ANEURIMig—Le
E LK 2 B R ESCAVEIE.

https://blog.csdn.net/happynear/article/details/4423854 1
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Inception

V2

convolution* TxT7/2 112x112x64 1

max pool 3x3/2 56 x 56 x 64 0

convolution 3x3/1 56 x 56 x 192 1 64 192

max pool 3x3/2 28x28x 192 0

inception (3a) 28 x 28 x 256 3 64 64 64 64 96 avg + 32
inception (3b) 28 x 28 x 320 3 64 64 96 64 96 avg + 64
inception (3c) stride 2 28 x 28 x 576 3 0 128 160 64 96 max + pass through
inception (4a) 14x14x 576 3 224 64 96 96 128 avg + 128
inception (4b) 14x14x 576 3 192 96 128 96 128 avg + 128
inception (4¢) 14x14x 576 3 160 128 160 128 160 avg + 128
inception (4d) 14x14x 576 3 96 128 192 160 192 avg + 128
inception (4¢) stride 2 14x14x1024 3 0 128 192 192 256 max + pass through
inception (5a) TxTx1024 3 352 192 320 160 224 avg + 128
inception (5b) Tx7x1024 3 352 192 320 192 224 max + 128

avg pool TxT7/1 1x1x1024 0

XFelF Presentation 2018
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Inception
V3

Filter Concat

3x3
3x3 3x3 1x1
1x1 1x1 Pool 1x1

Base

Figure 5. Inception modules where each 5 x 5 convolution is re-
placed by two 3 x 3 convolution, as suggested by principle 3 of
Section 2.

Filter Concat

1x1

1x1

Pool

1x1

Base

Filter Concat

i N i

1x1 1x1 Pool 1x1

Base

Figure 7. Inception modules with expanded the filter bank outputs.
This architecture is used on the coarsest (8 x 8) grids to promote
high dimensional representations, as suggested by principle Eof
Section 2. We are using this solution only on the coarsest grid,
since that is the place where producing high dimensional sparse
representation is the most critical as the ratio of local processing
(by 1 x 1 convolutions) is increased compared to the spatial ag-
gregation.

Figure 6. Inception modules after the factorization of the n x n
convolutions. In our proposed architecture, we chose n = 7 for
the 17 x 17 grid. (The filter sizes are picked using principle 3)

XFelF Presentation 2018
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Inception
V3

VI— e BEERNRHE DR (Factorization) |, E7x7
DN —HREIR (1x7,7x1) , 3x3th2—HF
(1x3,3x1) , XE—PMHEFRTFLE, BT DUNERITE
(ZREVITER T MARINRNZ) | XTI
conviff pf2~conv, FEHEMNLEREH—IEIN, BINT
MERAEL M, EHEESTENM T M AM
224x2247F 17 299x299, EANEMIEITT
35x35/17x17/8x8RYTELR ;

Figure 3. Mini-network replacing the 3 X 3 convolutions. The
lower layer of this network consists of a 3 x 1 convolution with 3
output units.
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Inception
V3

XFelF Presentation 2018

type patch size/stride input size
or remarks
conv 3x3/2 299%x299x3
conv 3x3/1 149%x149x 32
conv padded 3x3/1 147x147x32
pool 3x3/2 147x147x64
conv 3x3/1 T3xXT3x64
conv 3x3/2 T1x71x80
conv 3x3/1 35x35x192
3xInception As in figure 5 35X 35 %288
5 X Inception As in figure 6 17x17x768
2xInception | As in figure 7 8x8x 1280
pool 8 X 8 8 X 8 x 2048
linear logits 1 x 1 x2048
softmax classifier 1 x 1 x 1000

Table 1. The outline of the proposed network architecture. The
output size of each module is the input size of the next one. We
are using variations of reduction technique depicted Figure 10 to
reduce the grid sizes between the Inception blocks whenever ap-
plicable. We have marked the convolution with 0-padding, which
is used to maintain the grid size. O-padding is also used inside
those Inception modules that do not reduce the grid size. All other
layers do not use padding. The various filter bank sizes are chosen
to observe principle 4 from Section 2.
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Filter Concat

Filter Concat

Filter concate

Co t
nation
—_— 3x3
_— 7 3x3 convoluti 5x5 convoluti 1x1 convoluti T
P | ons ons ons
t L
X cs::OUl : N ¥ 3x3 3x3 1x1 Pt St Bt Bt Bt S S SN
L Output
N 1x1 convolut 1x1 convolut 3x3 max pool [ ] ] charmels
ons ons ny
- _— ”g T T T 1x1 conv
Previous layer 1x1 1x1 Pool 1x1 T
Input
Base

nceptions — -

Bk

Thanks for watching!
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